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a b s t r a c t

In earlier work, we developed a Monte Carlo method to compute the principal eigenvalue
of linear operators, which was based on the simulation of exit times. In this paper, we gen-
eralize this approach by showing how to use a branching method to improve the efficacy of
simulating large exit times for the purpose of computing eigenvalues. Furthermore, we
show that this new method provides a natural estimation of the first eigenfunction of
the adjoint operator. Numerical examples of this method are given for the Laplace operator
and an homogeneous neutron transport operator.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The value of the principal eigenvalue of the neutron transport operator or the diffusion operator in a bounded domain
gives relevant physical information regarding the large time behavior of the solution of the associated Cauchy problems.
For diffusion operators (e.g. Laplace), this eigenvalue controls the speed of convergence toward the steady-state; probabilis-
tically this is the rate of absorption of Brownian particles on the boundary. In addition, the principal eigenvalue also appears
in problems related to stochastic analysis; for example see [13] or [19, Chap. VI, §8]. In the case of the neutron transport
operator, the sign of this first eigenvalue determines if the system is sub-critical or super-critical [9]. This kind of problem
also appear in quantum physics, for example for the calculation of the ground state for a Hamiltonian.

The numerical computation of the principal eigenvalue and eigenfunction using a deterministic method requires the han-
dling of very large matrices obtained from sufficiently refined discretizations of the operator. The power method [27] is then
. All rights reserved.
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used to compute this principal eigenvalue and the corresponding eigenvector. There exists Monte Carlo versions of this
power method for stochastic matrices [29] or for a wide class of many-body problems and also for neutron transport crit-
icality computations [21,22,17,18]. The idea is to approximate the eigenfunction using particles which are updated using
a branching mechanism from a generation to another until convergence. Most of the time in relation to the Schrödinger
equation, this has given rise to a large class of methods known under various names – Quantum Monte Carlo, Diffusion
Monto Carlo, Green function Monte Carlo,. . . – that are used to compute the ground state [1,23,36,14,4]. Many of these ap-
proaches rely on the choice of a good approximation – a trial function – of the ground state deduced from the problem to
perform an importance sampling with a correcting drift, to project the density, or to obtain an approximation of the density
of the particles. This trial function can be deduced from the use of pseudo-potentials [31], from considerations on nodal lines
(the fixed-node approximation [14,34]), from parameter optimization [38]. On some particular problems, these methods
could lead to very accurate results.

In our context, one cannot necessarily deduce a good trial function from the shape of the domain. One of the authors [32]
has shown how to estimate the principal eigenvalue of the neutron transport operator without computing the eigenfunction
by combining, the probabilistic, Feynman-Kac representation of the solution of the related Cauchy problem and the spectral
expansion of the solution. When considering homogeneous neutron transport operators, this method reduces to the compu-
tation of the first time, s, of when a properly defined particle exits the domain. The idea is to estimate FðtÞ ¼ Px½s < t�, when
all the particles start from a single point x, and to use the approximation FðtÞ � C expðk1tÞ for t large, where k1 < 0 is the
desired principal eigenvalue. The eigenvalue, k1, is then evaluated using linear regression. This method was adapted to
the Laplace operator in [25] and could be suitable for more general diffusion operators. In contrast to the neutron transport
problem, for which exact simulation schemes exist, the choice of a simulation scheme is crucial in this case. In a previous
paper [25], we have also promoted the random walk on squares [30,6] and the random walk on rectangles [10] methods as
the best ones for use on a polygonal domain, D.

We consider the Cauchy problem for the following evolution equation
ouðt; xÞ
ot

¼ Auðt; xÞ þ cðxÞuðt; xÞwith uð0; �Þ ¼ u0; ð1Þ
in a bounded domain D, where A is a linear operator with absorption on oD, and c is a gain or loss factor (depending on its
sign). In both cases, the solution u admits a Feynman-Kac representation
uðt; xÞ ¼ Ex u0ðXtÞ exp
Z t

0
cðXsÞds

� �
1s>t

� �
; ð2Þ
where ðX;PxÞ is the Markov process associated to the operator A and s ¼ infft P 0jXt R Dg is the first exit time of this process
from D. For instance, if A is the Laplace operator, i.e. A ¼ 1

2M, the process, X, is ordinary Brownian motion. The processes re-
lated to transport operators are described in Section 4. We consider only homogeneous neutron transport problems, that is c
is constant, and we choose u0 ¼ 1. The solution to this special case of the transport equation is
uðt; xÞ ¼ expðctÞPx½t < s�; ð3Þ
so that the value of uðt; xÞ can be deduced from the distribution function of the first exit time s. In the case of the Laplace
operator, we also let u0 ¼ 1 and we set c ¼ 0, so that the solution is just uðt; xÞ ¼ Px½t < s�.

From an analytical point of view, the operator A generates a semi-group which has a transition density pðt; x; yÞ with re-
spect to Lebesgue measure, and the solution, u, to (1) in the case that c–0 may be written as
uðt; xÞ ¼ expðctÞ
Z

D
pðt; x; yÞu0ðyÞdy:
In both cases, an indirect application of the Kre�ın-Rutman theorem ([8, Appendix of Chap. VIII], [33]) implies that there exists
an eigenvalue, k1, of the operator, A, such that any element, k, of A’s spectrum has a real part smaller than k1. In addition, this
eigenvalue, k1, has multiplicity one and its associated eigenfunction does not vanish on the open domain D.

Throughout this paper, we assume that when c is constant, the solution uðt; xÞ may be expanded as
uðt; xÞ ¼ hu�1;u0iu1ðxÞ expððc þ k1ÞtÞ þ Rðt; xÞ ð4Þ
with Rðt; xÞ ¼ oðexpðk1tÞÞ; hf ; gi ¼
R

D f ðxÞgðxÞdx;u�1 is the first eigenfunction of the adjoint operator, A�, of A such that
u�1 > 0; hu�1;u1i ¼ 1, and the initial condition, u0, is in a reasonable space of functions that contain the constant functions
on D. The expansion (4) holds for most of the neutron transport operators used in practice, for self-adjoint operators with
a compact resolvent, such as the Laplace operator on a bounded domain, and more generally, for a large class of diffusion
operators.

Using (3) and (4), the distribution function FðtÞ ¼ Px½s < t� of the first exit time s of D can be then expanded as
FðtÞ ¼ 1� Px½t < s� ¼ 1� expð�ctÞðh1;u�1i expðk1tÞu1ðxÞ þ Rðt; xÞÞ:
The idea now is to approximate FðtÞ by an empirical distribution function obtained by simulating first exit times, s. There-
fore, we have developed some statistical methods to approximate k1 from this empirical distribution function.
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The problems we have in estimating k1 in this way are the following. First, we need to estimate FðtÞ for t > T for T large
enough that the approximation 1� FðtÞ ’ C expððk1 � cÞtÞ is valid. On the other hand, as we use an empirical distribution
function, FNðtÞ, with N samples to estimate FðtÞ, the variance of logð1� FNðtÞÞ explodes as t !1. A first idea is to estimate
FNðtÞ at two times t0 and t1, and use the difference of the values at these times to estimate k1 [28,32]. Another possible ap-
proach, developed in [25], is to find a time window ½t0; t1�, in which FNðtÞ is a good approximation of FðtÞ. A last approach is to
note that for t > t0 and c ¼ 0, the exit time, s, from D is distributed like an exponential random variable with parameter �k1.
Standard estimators, like the maximum likelihood estimator, can then be used.

The purpose of this article is to improve the results of [32] and [25]. To achieve this improvement, we propose a variance
reduction scheme for the empirical approximation of FðtÞ which is very easy to implement. As a byproduct of this method,
we can also estimate the first eigenfunction, u�1, of the adjoint, A�, of A. As the Laplace operator is self-adjoint, this is also the
first eigenfunction of 1

2M. For the neutron transport operator, the adjoint is also a neutron transport operator, so that the first
eigenvalue of A may be computed using our method on A�.

This new method is based on a branching mechanism which has been used in many fields (see for example
[11,12,5,24,26]). As we are interested in estimating the asymptotic behavior of FðtÞwhen t is large, we may restrict ourselves
to estimating
FðtÞ � FðTÞ
1� FðTÞ ¼ Px½s < tjs P T�;
for a fixed T > 0 and t P T. We assume that we know the distribution pT of the stochastic process XT starting at x. By the
Markov property, for t > T ,
Px½s < tjs P T� ¼ PpT ½s < t� ¼
Z

D
Py½s < t�dpTðyÞ:
The algorithm we use is the following. We fix T > 0 and we get compute the estimator bpT of pT using a Monte Carlo method,
then we simulate the first exit time, s, from D for the process X with bpT as initial distribution and we compute k1 using the
methods previously discussed in [32,25].

The number of particles we use to estimate the empirical distribution function of s given ft > Tg is the same as the num-
ber of particles we use to estimate bpT. This approach compensates for the absorption of particles at the boundary. We may
need also to estimate bpT1 ; . . . ; bpTN at some times T1 < . . . < TN, using a branching mechanism at each of these times in order
to get a good approximation of bpT. Not only does this provides a much better approximation of FðtÞ – up to multiplicative and
additive constants – when t is large, but bpT approximates the first eigenfunction of A� when T is large enough.

This branching mechanism is similar to those used in quantum Monte Carlo methods with at least two main differences.
First the number of branching times used in our method is very small (no more than 3 in the numerical experiments) and the
branching mechanism is very simple. Then, we do not try to converge toward the principal eigenfunction of the operator but
we obtain a direct approximation of the one of the adjoint operator.

With our approach, we do not need to have a priori information on the principal eigenfunction nor on the Green functions
on the whole domain. Yet we need an accurate simulation of the dynamic of the particles especially when close to the
boundary of the domain. To sum up, our branching mechanism is a numerical tool relying on the Markov property to handle
rare events simulations for operators in bounded domains with no potential.
2. Estimating the principal eigenvalue and its associated eigenfunction

The idea of the algorithm is to launch N particles started at a given point x, following them up to a fixed time T1, and to
recording the positions of the particles that have not yet been absorbed at the boundary. Then, we again simulate N particles,
this time using the empirical distribution of XT1 given fs > T1g as the initial distribution. From the Markov property, the par-
ticles have a distribution close to Px½�js > T1�. We can then use several time slices T2; . . . ; Tk to obtain a good approximation of
the behavior of the particle given fs > Tkg.

2.1. The algorithm

Our algorithm is the following

� Fix some times T0 ¼ 0 < T1 < T2 < . . . < Tk, a number, N, of samples and a point, x 2 D. Set bpT0 ¼ dx.
� For i from 0 to k� 1 do

– Using bpTi
as the initial distribution, simulate N independent realizations fXðjÞgj¼1;...;N of XðTiþ1�TiÞ^s, where s is the first

exit time from D.
– Let NðiÞ be the subset of f1; . . . ;Ng of random variables such that XðjÞ belongs to D. Set bpTiþ1 ¼ 1

jNðiÞj
P

j2NðiÞdXðjÞ .

� Using bpTk
as the initial distribution, simulate N realizations ftðjÞgj¼1;...;N of the first exit time s from D.

� Estimate k1 from ftðjÞgj¼1;...;N and estimate u�1 from the the realizations fXðjÞgj¼1;...;NðiÞ of the position of XTiþ1
.
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Of course, the quality of the result is sensitive to the choices of T1; . . . ; Tk;N, and in a smaller way, to the starting point x.
Yet, as we have shown in [25], the quality of the method used to simulate s and Xt is one of the main concerns for the accu-
racy of the estimators.

2.2. How to choose the final time slice?

To get a good estimate of the principal eigenvalue, we should choose the times T1; . . . ; Tk appropriately, and Tk should be
chosen to be large enough. As was already noted, the distribution of ðXtþTÞtP0 for T sufficiently large is essentially given by
the principal eigenvalue and its associated eigenfunction. In particular, the density of XTi

given fTi < sg and XTiþ1 given
fTiþ1 < sg tends to converge to the principal eigenfunction u�1 (normalized to be a probability density). One can then test
the L2-difference between two successive densities. A simpler criterion is obtained by setting
pi ¼ P½s > Tiþ1js P Ti� ’ u1ðxÞh1;u�1i expðk1ðTiþ1 � TiÞÞ;
when Ti is large, and choosing the first i such that pi is close to piþ1.

2.3. Estimating the principal eigenvalue from the empirical distribution function

We now present a few possible estimators for k1 that can be obtained from the simulated values of the first exit time s.
(a) Interpolation method. This method is very simple. It was originally introduced by one of the author in his thesis [28,32]

(see also [25]). Given two times t0 and t1 > t0, we estimate Fðt0Þ and Fðt1Þ from a Monte Carlo simulation, which gives bFðt0Þ
and bFðt1Þ. If t0 and t1 are large enough, then
kLIðt0; t1Þ ¼
1

t1 � t0
log

bF ðt1ÞbFðt0Þ

 !
is an estimator for k1. One can also compute a confidence interval for k1 [25].
(b) Least square estimators. We construct the empirical distribution function bFðtÞ of FðtÞ for t sufficiently large, and then

estimate logð1� bFðtÞÞ ’ K þ k1t using a least square method.
The error between logð1� bFðtÞÞ and logð1� FðtÞÞ is approximatively given by
logð1� bFðtÞÞ ’ logð1� FðtÞÞ þ g � F�1ðtÞffiffiffiffi
N
p
ð1� FðtÞÞ

;

where ðgðtÞÞt2½0;1� is a Brownian bridge process. A consequence of this computation is that we take t in some interval ½t0; t1�
with t0 large enough so that the principal eigenvalue dominates the approximation of FðtÞ, and t1 > t0 not too large so that
the variance of the last term is kept small.

Hence, we pick m time points fhigi¼1;...;m in ½t0; t1� and then we use ðhi; logð1� bFðhiÞÞÞ as the points to perform linear regres-
sion. Of course, this estimator depends on the choice of the hi. In [25], we discussed how to choose the best estimator when
relatively few points are used (with respect to the number of bins of the histogram used to construct bF ). Another possibility
consists of using a linear interpolation of the discrete values of the function bF and then using many points fhigi¼1;...;m. If we
pick m random points fhigi¼1;...;m in ½t0; t1�, then the least squares estimator is very stable with respect to the choice of the
points, when m is large (in our numerical example, we construct our histograms with 1000 bins and m ¼ 10;000). Note that
the variability in the estimator as a function of the choice of ½t0; t1� is greater than the variability given by the confidence
interval for the slope of the curve in the linear regression. The quality of the estimator may be deduced from the quantity
1� R2, where R2 is the coefficient of determination.

(c) Maximum likelihood. For T sufficiently large, Px½s > tjs > T� ’ C expðk1tÞ. Thus s is an exponential random variable
with parameter �k1 (see [2]). The probability density of s given fs > Tg is pðt; kÞ ¼ �k expð�kðt � TÞÞ with k ¼ k1. Hence,
it is possible to use the standard estimators of the parameter of an exponential distribution. A natural estimator of k1 is
the maximum likelihood estimator, i.e., the value kML which maximizes k#

QM
i¼1pðsðiÞ; kÞ, where fsðiÞgi¼1;...;M are the values

of s greater than T, that is
kML ¼ �
MPM

i¼1ðsðiÞ � TÞ
:

It is also a classical result that such estimators are asymptotically normal. In addition, the variance of this estimator is known
to be related to the Fisher information Iðk1Þ of the exponential distribution. This means that

ffiffiffiffiffi
M
p
ðkML � k1Þ converges to a

normal distribution of mean 0 and variance 1=Iðk1Þ with
IðkÞ ¼
Z þ1

T

ðokpðt; kÞÞ2

pðt; kÞ dt ¼ 1
k2 :
On this topic, see for example [39].
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(d) Other possible estimators. Other estimators have been proposed to estimate the parameter of an exponential distri-
bution: see for example [35,15]. In the previously cited articles, the proposed estimators are robust and thus less sensitive to
the presence of outliers than the maximum likelihood estimator.

2.4. Estimating the principal eigenfunction

When c ¼ 0, comparing (2) and (4), respectively with a general bounded, measurable function u0 and with the function
u0 ¼ 1 leads to
Ex½u0ðXtÞjt < s� ¼ Ex½u0ðXtÞ; t < s�
Ex½1; t < s� ¼ hu0;u�1iu1ðxÞ expðk1tÞ þ oðexpðk1tÞÞ

h1;u�1iu1ðxÞ expðk1tÞ þ oðexpðk1tÞÞ ’
hu0;u�1i
h1;u�1i
when the time t is sufficiently large. Thus, the density of the position, Xt , given ft < sg is u�1=h1;u�1i for large t, assuming that
u�1 > 0 is in D (one knows that u�1 is of one sign on D).

The simplest way to estimate the principal eigenvalue u�1 of the adjoint, A�, of A is to construct an histogram of the posi-
tions Xt at a given sufficiently large time, t, for a sample of the surviving particles at this time. A less trivial way is to construct
u�1 as a superposition of a distribution density — a kernel — around each simulated point (see [37] for example). This gives
one a more regular density. In the numerical examples of Sections 3 and 4, we show that we can obtain good approximations
of this eigenfunction using each of the two methods.

With k1;u1 and u�1, we have a complete description of the solution of the Cauchy problem at large times for every initial
functions and any point, as can be seen in the expansion (4). If the function, u1, is not completely known, we at least know
the value of u1 at the point where the simulation starts. We can then estimate the solution to the Cauchy problem (4) at this
point for any initial condition at large time. Our algorithm allows us to estimate u�1. In some cases, if A is self-adjoint or if the
domain and the operator exhibit some symmetries, one can deduce u1 directly from u�1. More generally, for a wide class of
operators, it is possible to apply our algorithm to the adjoint of A so we estimate u1.

2.4.1. On the adjoint of the homogeneous neutron transport operator
The neutron transport operator is a member of a particular class of transport operators that includes particle collision,

more specifically they are of the form
Auðx; vÞ ¼
Xd

i¼1

vi
ou
oxi
ðx; vÞ þ m

Z
V
pðx; v; v0Þðuðx; v0Þ � uðx; vÞÞdv0;
where ðx; vÞ 2 D ¼ S	 V 
 Rd 	 Rd; m 2 R�þ and pðx; v; �Þ is a distribution function on V for any ðs; vÞ 2 D. We can interpret this
via the simulation of a particle with position Xt and velocity Vt . When a collision occurs at time t, the new velocity Vtþ of the
particle is chosen randomly using the density pðXt ;Vt; �Þ. The particle then moves with constant velocity until the next col-
lision that at an exponentially time with mean m.

Formally, the adjoint A� of A is
A�uðx; vÞ ¼ �
Xd

i¼1

vi
ou
oxi
ðx; vÞ þ m

Z
V
pðx; v0; vÞðuðx; v0Þ � uðx; vÞÞdv0:
If pðx; �; vÞ is a probability density distribution, then one easily obtains that the solution to
ouðt; x; vÞ
ot

¼ A�uðt; x; vÞ on D with uð0; x; vÞ ¼ u0ðx; vÞ
is equal to buðt; x;�vÞ ¼ uðt; x; vÞ, where bu is solution to
obuðt; x; vÞ
ot

¼ bAbuðt; x; vÞ on bD with buð0; x; vÞ ¼ uðx;�vÞ:
Here bD ¼ S	 ð�VÞ and
bAuðx; vÞ ¼
Xd

i¼1

vi
ou
oxi
ðx; vÞ þ m

Z
�V

bpðx; v; v0Þðuðx; v0Þ � uðx; vÞÞdv0; bpðx; v; v0Þ ¼ pðx;�v0;�vÞ; ðv; v0Þ 2 ð�VÞ2:
Hence, the principal eigenfunction u1 of A is also the principal eigenfunction of the adjoint, which may then be deduced
from the principal eigenfunction bu1 of bA by u1ðx; vÞ ¼ bu1ðx;�vÞ.

Thus, under the assumption that pðx; v; �Þ and pðx; �; vÞ are probability densities – this hypothesis is really practical –, one
can use our algorithm on bA to get the principal eigenfunction, u1, of A, as well as its associated eigenvalue. As we will see in
examples, there are realistic cases where one can deduce the principal eigenfunction of A from that of A� using symmetry
arguments.

The principal eigenvalue of bA is equal to the principal eigenvalue of A, so that taking the average of the two estimators for
these principal eigenvalues gives a slightly better approximation of these quantities.
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2.4.2. On diffusion processes
Of course, if A is the Laplace operator, 1

2M, then u�1 ¼ u1 since A is self-adjoint. Thus, our algorithm directly gives us the
principal eigenfunction of A.

We also claimed in [25], that our approach can be used for a more general diffusion process whose infinitesimal generator
is
A ¼ 1
2

Xd

i;j¼1

ai;j
o2

oxioxj
þ
Xd

i¼1

bi
o

oxi
:

Although A is not generally self-adjoint, under mild regularity assumptions on the coefficients and the domain, it has a dis-
crete spectrum and there exists a real eigenvalue k1 such that any other (possibly complex) eigenvalue has a smaller real
part; see [33] for example. In order to compute the principal eigenvalue of A, an appropriate simulation scheme will be used.
The problem of obtaining a good approximation of the first exit time from a domain has given rise to a large literature; see
[30,16,20,3] for example.

The adjoint A� of A is given by
A� ¼ 1
2

Xd

i;j¼1

o2

oxioxj
ðai;j�Þ �

Xd

i¼1

o

oxi
ðbi�Þ;
and our algorithm directly computes the principal eigenfunction, u�1, of A�. The principal eigenvalue of A� is also k1. If one
wishes to compute the principal eigenfunction, u1 of A, one can use that A�� ¼ A and thus the principal eigenfunction of
the adjoint of A� is u1. If the coefficients, a and b, are smooth enough, this operator A� may be written as
A� ¼ 1
2

Xd

i;j¼1

ai;j
o2

oxioxj
þ
Xd

i¼1

bi
o

oxi
þ c;
with
bi ¼
1
2

Xd

j¼1

oai;j

oxi
� bi and c ¼ 1

2

Xd

i;j¼1

o2ai;j

oxioxj
�
Xd

i¼1

obi

oxi
:

Note: if the coefficients are constant, then c ¼ 0, and so u1 may be computed by simulating the process associated with A�.
We now deal with the case of non-constant c. The approach presented here can also be used to deal with a non-homo-

geneous creation/destruction rate, c. Let L be the differential operator
L ¼ 1
2

Xd

i;j¼1

ai;j
o2

oxioxj
þ
Xd

i¼1

bi
o

oxi
;

so that A� ¼ Lþ c. Let us assume that c is bounded by a constant, a, and let v be the solution to
ov
ot
¼ Lvþ cv� av with vð0; �Þ ¼ v0;
with a Dirichlet boundary condition on the boundary of the cylinder, Rþ 	 oD. The solution, v, may be represented by the
Feynman-Kac formula
vðt; xÞ ¼ Ex v0ðYtÞ exp
Z t

0
cðYsÞds� at

� �
; t < s

� �

where Y is the process generated by L. Let f be an exponential random variable with parameter 1, then vðt; xÞmay be written
also
vðt; xÞ ¼ Ex v0ðYtÞ;
Z t

0
cðYsÞds� at > f and t < s

� �
: ð5Þ
On the other hand
vðt; xÞ ’ expðk�1tÞhv0;w
�
1iw1ðxÞ when t islarge; ð6Þ
where k�1 is the principal eigenvalue of A� � c ¼ L� � c and w1 is its associated eigenfunction with hw1;w
�
1i ¼ 1. We note that

w1 ¼ u�1;w
�
1 ¼ u1 and k�1 ¼ k1 � a. As above, we obtain from (5) and (6) that
hv0;u1i
h1;u1i

’ Px v0ðYtÞ
Z t

0
cðYsÞds� at > f and t < s

� �

when t is large. Hence, a branching Monte Carlo method may still be used. But here, unless c ¼ 0, one also needs to compute
the integral

R t^s
0 cðYsÞds along the simulated Y paths.



9800 A. Lejay, S. Maire / Journal of Computational Physics 227 (2008) 9794–9806
Computing numerically the principal eigenvalue k�1, while estimating u1 also helps us to improve slightly the estimation
of k1.

2.5. Estimating the second eigenvalue of the Laplace operator?

As the Laplace operator with Dirichlet boundary conditions is self-adjoint, the spectrum, fkkgkP1, of 1
2M is countable, real

and negative. In addition,
pðt; x; yÞ ¼
X
kP1

expðkktÞukðxÞukðyÞ; t > 0; x; y 2 D; ð7Þ
where we use the convention . . . b 6 k3 6 k2 < k1 < 0, and the uk are the normalized eigenfunctions associated with kk. The
distribution function, FðtÞ ¼ Px½s < t�, is given by the relation
1� FðtÞ ¼ Ex½1; t < s� ¼
Z

D
pðt; x; yÞdy ¼

X
kP1

e�kktukðxÞ
Z

D
ukðyÞdy:
One may wonder whether or not it is possible to estimate – at least roughly – the second eigenvalue with this algorithm, as
the density may be written
pðt; x; yÞ ¼ ek1tu1ðxÞu1ðyÞ þ ek2tu2ðxÞu2ðyÞ þ rðt; x; yÞ;
where e�k2trðt; x; yÞ decreases to 0, and both k1 and u1 are estimated using the previous algorithm. Two methods appear to be
natural.

(a) Subtract from FNðtÞ the estimate of the quantity 1� expðk1tÞu1ðxÞhu1;1i and estimate u2hu2;1i expðk2tÞ in the same
way the k1 was estimated.

Instead of starting from the point x, one may also look for a probability measure, l, on D such that
R

D u1ðxÞdlðxÞ is as
small as possible. This is justified by
Pl½T < s� ¼
Z

D

Z
D

pðt; x; yÞdydlðxÞ ’
Z

D
u1dl

� �
hu1;1i expðk1tÞ þ

Z
D
u2dl

� �
hu2;1i expðk2tÞ:
The effect is to increase the relative importance of the second eigenvalue when approximating Pl½T < s�.
(b) Create a function, u?1 , that is orthogonal with respect to the L2ðDÞ scalar product. If ku1kL2ðDÞ ¼ 1, then

u?1 ¼ 1� ð
R

D u1ðyÞdyÞu1 is such a function. Then evaluate the quantities
vi ¼ Ex½u?1 ðXTi
Þ; Ti < s� ’ expðk2 TiÞu2ðxÞhu2;u

?
1 i
for i ¼ 1;2, where T1 and T2 are two times that are not too large, then set k2 ¼ ðT1 � T2Þ�1 logðv1=v2Þ.
On the test cases of Section 3, we have performed numerical experiments for both these methods. Unfortunately, none of

these methods has provided a stable enough estimator of k2.

3. Numerical examples for the Laplace operator

In this Section, we give two numerical examples related to Laplace operators. The first test case is has D as just a rectangle,
where the eigenvalues and the eigenfunctions are explicitly known. This case gives us the inherent limit of the implemen-
tation of the Monte Carlo method. One cannot expect to get a better precision for a general case than for this case with the
same number of samples. The second one has a slightly more complicated geometry, and has been already studied in [25].

In the sequel, we call kML the maximum likelihood estimator. The width of the 90% confidence interval is 2k1

ffiffiffiffiffiffiffiffiffiffi
1:64
p

=
ffiffiffiffiffi
M
p

,
where M is the number of samples used to compute the maximum likelihood estimator. We use kLSðt0; t1Þ for the least square
estimator on the time interval ½t0; t1�, and a large set of points ðm ¼ 10;000Þ.

3.1. Case of a rectangle

The eigenvalues and eigenfunctions of 1
2M are explicitly known when D is the rectangle ½�L; L� 	 ½�‘; ‘�. We have, for any

integers n;m P 1,
kn;m ¼ �
1
2

np
2L

� �2
þ mp

2‘

� �2
� �

and un;mðx; yÞ ¼ sin
np
2L
ðxþ LÞ

� �
sin

np
2‘
ðyþ ‘Þ

� �
:

We consider the rectangle D ¼ ½�2;2� 	 ½�3=2;3=2�, for which the principal eigenvalue k1;1 is �0.856735. In order to study
how to optimize the estimation of k1;1, we perform five scenarios with N particles each. The results are summarized in Table
1. Except in Case (b), the particles start from the center of the rectangle in order to have a large number of particles that
survive to time T1.

We use several slices at times Ti, and we compute the empirical distribution function, wi, of XTi
obtained from the sam-

ples. To construct these functions, we use an histogram of cells of size 0:01	 0:01. The functions wi are normalized to have a



Table 1
Estimation of the principal eigenvalue of the rectangle using a sample size of N

Estimator Value 1� R2

Exact value �0.856735

Simulation (a) N ¼ 106; h ¼ 1 units
kML ðs P 2Þ �0:8525� 2:5 	 10�3

kLS ð2;4Þ �0.8527 2 	 10�6

kLS ð2;6Þ �0.8518 3 	 10�6

kLS ð2;8Þ �0.8521 2 	 10�5

Simulation (a) N ¼ 107; h ¼ 10 units
kML ðs P 2Þ �0:8554� 8 	 10�4

kLS ð2;4Þ �0.8553 5 	 10�7

kLS ð2;6Þ �0.8569 8 	 10�6

kLS ð2;8Þ �0.8580 6 	 10�6

Simulation (b) N ¼ 106; h ¼ 3:5 units
kML ðs P 0Þ �0:8570� 1:1 	 10�3

kLS ð0;2Þ �0.8571 2 	 10�6

kLS ð0;4Þ �0.8588 4 	 10�6

kLS ð0;6Þ �0.8564 7 	 10�6

kLS ð0;8Þ �0.8556 15 	 10�6

Simulation (c) N ¼ 106; h ¼ 3 units
kML ðs P 2Þ �0:8564� 10�3

kLS ð2;4Þ �0.8568 6 	 10�6

kLS ð2;6Þ �0.8571 7 	 10�7

kLS ð2;8Þ �0.8615 6 	 10�5

Simulation (d) N ¼ 106; h ¼ 4:5 units
kML ðs P 4Þ �0:8577� 10�3

kLS ð4;6Þ �0.8567 1:2 	 10�6

kLS ð4;8Þ �0.8577 1:4 	 10�6

kLS ð4;10Þ �0.8549 7:0 	 10�6

Simulation (e) N ¼ 106; h ¼ 6 units
kML ðs P 6Þ �0:8564� 10�3

kLS ð6;8Þ �0.8573 4 	 10�7

kLS ð6;10Þ �0.8565 9 	 10�7

kLS ð6;12Þ �0.8569 2:6 	 10�6

The quantity h gives the relative execution time.
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L2-norm equal to 1. In all cases, the L2-norm of the difference between wi and the adequately normalized eigenfunction u1;1 is
around 0.5.

Simulation (a). Here we do not use the branching algorithm, so we only keep the first exit times that are larger than 2.
Simulation (b). In order to have a comparison between the use of the empirical distribution function for XT for T suffi-

ciently large, instead of the density u1;1=
R

D u1;1, we randomly pick the starting point according to the probability distribu-
tion, l, with density bu ¼ u1;1=

R
D u1;1. For l, since the eigenfunctions are orthogonal, we note that Pl½s > t� ¼ expðk1tÞ, so

that s is an exponential random variable with parameter �k1.
Simulation (c). Here we use only one time slice at T1 ¼ 2. The probability that the particle survived to time T1 is

p1 ¼ 19:2%.
Simulation (d). We use the time slices T1 ¼ 2 and T2 ¼ 4. The probabilities of survival, pi, at times Ti are p1 ¼ 19:2%, and

p2 ¼ 5:2%.
4

3

1

1

2

1

1

3

Fig. 1. A 2-dimensional domain. The dot represents the starting point.



Table 2
Estimation of the principal eigenvalue of the 2d-test case using a sample size, N

Estimator Value 1� R2

Reference value �0.73952

Simulation (a) N ¼ 106; h ¼ 1 units
kML ðs P 2Þ �0:7373� 1:5 	 10�3

kLS ð2;4Þ �0.7403 2:0 	 10�5

kLS ð2;6Þ �0.7381 1:1 	 10�5

kLS ð2;8Þ �0.7378 1:5 	 10�5

Simulation (a) N ¼ 107; h ¼ 10 units
kML ðs P 2Þ �0:7374� 0:5 	 10�3

kLS ð2;4Þ �0.7397 2:7 	 10�6

kLS ð2;6Þ �0.7387 0:8 	 10�6

kLS ð2;8Þ �0.7367 5:5 	 10�6

Simulation (b) N ¼ 106; h ¼ 2:5 units
kML ðs P 2Þ �0:7378� 0:9 	 10�3

kML ðs P 3Þ �0:7373� 1:3 	 10�3

kLS ð2;4Þ �0.7366 1:0 	 10�6

kLS ð2;6Þ �0.7378 7 	 10�7

kLS ð3:5;5:5Þ �0.7390 8 	 10�7

kLS ð2;8Þ �0.7392 1:2 	 10�6

Simulation (c) N ¼ 106; h ¼ 4:2 units
kML ðs P 4Þ �0:7389� 0:9 	 10�3

kML ðs P 5Þ �0:7389� 1:3 	 10�3

kLS ð4;6Þ �0.7396 1:9 	 10�6

kLS ð4;8Þ �0.7391 1:5 	 10�6

kLS ð4;10Þ �0.7375 3:5 	 10�6

The quantity h gives the relative execution time.
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Simulation (e). We use the time slices T1 ¼ 2; T2 ¼ 4 and T3 ¼ 6. The probabilities of survival are p1 ¼ 19:2%, p2 ¼ 5:2%,
and p3 ¼ 0:9%.

3.2. A 2-dimensional test case

Our estimation algorithm was presented in [25] for a 2-dimensional test case, which is the domain presented in Fig. 1. The
results are then compared with the ones obtained with the pdetool package from Matlab. Using a very fine mesh, this
deterministic solver gives the value k1 ¼ 0:73952. Our numerical results are given in Table 2.

Simulation (a). Here, there is no branching. For the maximum likelihood estimator, we keep only the values of s that are
greater than 2, which means that we use only 36% of the particles.

Simulation (b). We use only a single time slice at T ¼ 2. Regarding the principal eigenvalue, we compute u1 at time T, with
an histogram with square cell 0:05	 0:05, which we compare with the eigenfunction given by Matlab. The L2-norm of the
difference between these two functions is 0.1.

Simulation (c). We use two time slices at T1 ¼ 2 and T2 ¼ 4. The proportion of particles remaining at the first slice is
p1 ¼ 36%, and at the second slice it is p2 ¼ 8%. The L2-norm of the difference between the eigenfunction given by the Monte
Carlo Method at time T ¼ 4 and the one given by the finite-element method is 0.1.

Remark 1. We note that with (7), if one knows k1 and w1, then one can approximate the density, pðt; x; yÞ, of the Laplace
operator as pðt; x; yÞ ¼ expðk1tÞu1ðxÞu1ðyÞ for t sufficiently large. This gives us a large time approximation of the solution of
the Cauchy problems
ouðt; xÞ
ot

¼ 1
2
Muðt; xÞ with uð0; xÞ ¼ u0ðxÞ
for any function u0, since uðt; xÞ ¼
R

D pðt; x; yÞu0ðyÞdy.
4. Numerical examples with neutron transport operators

4.1. The Lehner-Wing model

4.1.1. Description and stochastic representation
We study the Cauchy problem
ou
ot
¼ �v

ou
ox
� uðt; x; vÞ þ c

2

Z
V

uðt; x; v0Þdv0;
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with initial conditions uðx; v;0Þ ¼ 1, and absorpting boundary conditions. The spatial domain is S ¼ ð0; dÞ, the velocity do-
main is V ¼ ð�1;1Þ, and c is a positive constant. This model is homogeneous and isotropic and we rewrite it as
Table 3
Estimat

N

aLI ðT1;

aLI ðT2;

aLI ðT1;

Error m
Relative

The sta
ou
ot
¼ Auðt; x; vÞ þ c � 1ð Þuðt; x; vÞ; ð8Þ
with
Au ¼ �v
ou
ox
þ c

1
2

Z
V

uðt; x; v0Þdv0 � uðt; x; vÞ
	 


;

to obtain the stochastic representation of its solution. Let us consider the velocity ðVtÞtP0, of a particle with collisions that
occur at random times. After a collision, the velocity is chosen from a uniform distribution on V. The cumulative distribution
of the time between two collisions is
1� exp �
Z t

0
cds

� �
¼ 1� exp �ctð Þ:
The process we consider now is a solution ðXt ;VtÞtP0 of the differential equation dXt
dt ¼ �Vt with initial conditions X0 ¼ x and

V0 ¼ v. The infinitesimal generator of this process ðXt ;VtÞtP0, is A. The solution of (8) may thus be written as
uðt; x; vÞ ¼ expððc � 1ÞtÞPx;v½s > t�;
where s is the exit time from D ¼ S	 V, for the process ðXt ;VtÞtP0, with X0 ¼ x and V0 ¼ v under Px;v.
This model is known as the Lehner-Wing model [9, Chap. 21, p. 1164], and is also called multiplying slabs [7].
There are two kinds of eigenvalue problems in neutron transport; the first is the criticality computation. In our problem, it

consists in finding the value of the parameter, c, such that the principal eigenvalue of the operator Bu ¼ Auþ ðc � 1Þu is equal
to 0. This means that the principal eigenvalue k1 of A is equal to 1� c, since the principal eigenvalue of B is k1 þ c � 1. The
second kind of problem is the computation of this eigenvalue for a given value of c.

We first assume that we have a very good approximation of the parameter, c, corresponding to the critical value. In this
situation, we have to check that the principal eigenvalue is fairly close to 0, using our estimator. Second, we take two values
of c below and above the critical value and compute the corresponding principal eigenvalues; we then compute the critical
parameter using the secant method.

4.1.2. In the critical case
As our next numerical example, we simulate ðXt ;VtÞtP0 when the spatial domain S is ð0;8Þ. The value of the critical

parameter here is c ¼ 1:03639014 (see [7]).
In our branching algorithms, we use slices at times T1 ¼ 40, T2 ¼ 80, and T3 ¼ 120. In order to estimate the principal

eigenvalue of A, we use the interpolation estimator kLIðt0; t1Þ with or without branching using the values of Fðt0Þ ¼
Px;v½s < t0�, and Fðt1Þ ¼ Px;v½s < t1� (see Section 2.3). The probabilities pi ¼ 1� FðTiÞ tell us that the particles are still alive
at time Ti with probabilities p1 ¼ 30:7%; p2 ¼ 7:2% and p3 ¼ 1:7%. Note that the ratios p2=p1 ¼ 0:2333 and p3=p2 ¼ 0:2334
are very close. This confirms that the system has reached the steady-state after T1. When the successive ratios piþ1=pi become
stationary, the behavior of the system is dominated by the principal eigenvalue and eigenfunction. In Table 3, we do not re-
port the principal eigenvalue k1 of A, but the principal eigenvalue of a ¼ c � 1þ k1 of B, which will be close to 0.

4.1.3. Computation of the criticality factor
We will use the secant method to compute the criticality factor. In Table 4, we compute the values of aðcÞ ¼ c � 1þ k1ðcÞ

for c ¼ cmin ¼ 1:036, and c ¼ cmax ¼ 1:037 using the previous method, assuming for the sake of simplicity that we are already
near criticality. The estimator we use for k1 is still the one given by linear interpolation, and we set aLIðt0; t1Þ ¼ c � 1þ
kLIðt0; t1Þ.

The approximation of the criticality factor is then
bc ¼ cmin � amin
cmax � cmin

amax � amin
¼ 1:036406;
ion of the principal eigenvalue a of B for the critical value of c with N particles

With branching Without branching

106 107 106 107

T2Þ 2:2 	 10�5 1:0 	 10�5 6:5 	 10�5 0:2 	 10�5

T3Þ �3:3 	 10�5 1:4 	 10�5 1:6 	 10�4 9:0 	 10�5

T3Þ �5:4 	 10�6 1:2 	 10�5 1:1 	 10�4 5:1 	 10�5

ax 3:3 	 10�5 1:1 	 10�5 1:6 	 10�4 9 	 10�5

Time 2 20 1 10

rting point is ðx; vÞ ¼ ð4;�0:2Þ.



Table 4
Estimation of the principal eigenvalue a of B for c close to the critical value with N particles

N c ¼ cmin ¼ 1:036 c ¼ cmax ¼ 1:037

106 107 106 107

aLI ðT1; T2Þ �0.000435 �0.000415 0.000633 0.000610
aLI ðT2; T3Þ �0.00423 �0.000430 0.000564 0.00062
aLI ðT1; T3Þ �0.000429 �0.00042 0.000598 0.000615

The starting point is ðx; vÞ ¼ ð4;�0:2Þ.
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where amin ¼ �0:000421 and amax ¼ 0:00615 are obtained by averaging the 3 estimators of Table 4 using N ¼ 107 particles.
The value of bc is close to 1:5 � 10�5 of the true one. In a previous paper [32], this level of accuracy required N ¼ 109

simulations.

4.1.4. Estimation of the solution of the Cauchy problem at large time
We now show how the estimation of the principal eigenfunction provides a complete description of the solution to (8) at

large time. Table 5
Using the spectral expansion of the solution uðt; x; vÞ to (8) with the initial condition uð0; x; vÞ ¼ 1 we get
Table 5
Estimat

c

aLI ðT1;

aLI ðT2;

aLI ðT1;

Mean
uðt; x; vÞ ¼ expððc � 1ÞtÞðbðx; vÞ expðk1tÞ þ oðexpðk1tÞÞÞ; ð9Þ
where k1 is the principal eigenvalue of the neutron transport operator, A, and bðx; vÞ ¼ h1;u�1iu1ðx; vÞ. As uðt; x; vÞ ¼
expððc � 1ÞtÞPx;v½t < s�; k1 is related to the rate of absorption of the particles by the boundary. The function, bðx; vÞ, is equal
to h1;u�1iu1ðx; vÞ, where u1 and u�1 denote the principal eigenfunctions of A and A� with hu�1;u1i ¼ 1 (see for example Chap.
XXI, §3 in [9]). The interpolation method, or the least squares method, also give the value of b0 ¼ bðx0; v0Þ at the starting point
ðx0; v0Þ of the particles, which can also be deduced from b0 expðk1tÞ ¼ Px0 ;v0 ½t < s�. With the branching method, we can
approximate
w�1ðx; vÞ ¼
u�1ðx; vÞ
h1;u�1i
with the density, ðXT;VTÞ, for T sufficiently large. We set w1ðx; vÞ ¼ u1ðx; vÞh1;u�1i. Using this expression for bðx; vÞ, the solu-
tion to (9) with uð0; �; �Þ ¼ u0 becomes
uðt; x; vÞ ¼ hu0;w
�
1i expððc � 1� k1ÞtÞw1ðv; xÞ þ oðexpððc � 1� k1ÞtÞÞ;
where w�1ðx; vÞ can be estimated from the simulations. To estimate w�1ðx; vÞ and b0, one can instead estimate w1ðx0; v0Þ at the
starting point ðx0; v0Þ. Using the symmetry properties of the coefficients of the neutron transport operator and the symme-
tries of the domain, we get that w1ðx; vÞ ¼ w�1ðd� x;�vÞ. We give a numerical illustration of this in the critical case above with
107 particles. For b0 ¼ bðx0; v0Þwith ðx0; v0Þ ¼ ð4;�0:2Þ, using the times T2 and T3, we obtain b0 ’ 1:316. We now estimate w1

– the density of ðXT;VTÞ at time T ¼ 80 – from the positions XðiÞT ;V
ðiÞ
T

� �
of the J0 particles remaining at this time. We then use a

convolution kernel so that
w1ðx; vÞ ¼
1

2pJ0h2

XJ0

i¼1

exp �ðx� XðiÞÞ2

2h2

 !
exp �ðv� V ðiÞÞ2

2h2

 !
:

With h ¼ 0:1, we compute w1ð4;�0:2Þ and obtain 0.0883, which leads to an approximation of K ¼ h1;w�1i ¼ 14:9. Thus, in the
critical case,
uðt; x; vÞ ¼ Kw1ðx; vÞ þ oðexpððc � 1þ k1ÞtÞÞ:
We have also computed w1ð4;0:2Þ ¼ 0:0892, thanks to the same kernel approximation, which should be equal, by a symme-
try argument, to w1ð4;�0:2Þ. The difference between w1ðx0; vÞ and w1ðx0;�vÞwith x0 ¼ 4 in the middle of S provides us with a
test for checking for a possible error in the algorithm. This also indicates the highest accuracy one can expect for w1. Thus,
with simulations starting from a single point, we obtain a complete description of uðt; x; vÞ for any ðx; vÞ 2 D and t large
ion of the principal eigenvalue a of B for the multiplying spheres models with N ¼ 107 particles

1.138 0.1384602 1.139

T2Þ �0.000419 7:1 	 10�5 0.00067
T3Þ �0.000540 1:8 	 10�5 0.00056
T3Þ �0.000480 4:7 	 10�5 0.00061

�0.00052 4:5 	 10�5 0.000613
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enough. We can use this description for some rare event estimations. For example, if one needs to compute Px;v½s > T� for a
larger value of T than the one used in this simulation, one can use the approximation
Px;v½s > T� ’ expðk1TÞKw1ðx; vÞ:
Thanks to the Markov property, for any measurable event, C, that this depends only on what happens after time T sufficiently
large,
Px;v½ðXt ;VtÞtPT 2 C� ’ Kw1ðx; vÞ expðk1TÞPw�1
ðXt;VtÞtP0 2 h�1

T C
� �

;

where ðhtÞtP0 is the shift operator of the Markov process. Thus, one has only to perform a Monte Carlo estimation of
Pw�1
½ðXt;VtÞtP0 2 h�1

T C� to get an estimate of Px;v½ðXt ;VtÞtPT 2 C�.

4.2. Multiplying spheres

We now consider a similar problem, where the positions of the particles take their values in a ball, and the velocities take
their values on the unit sphere. The numerical resolution of such a problem requires the discretization of 5 variables by
means of deterministic methods.

4.2.1. The physical model
We now consider the Cauchy problem
ouðt; x; vÞ
ot

¼ �vrxuðt; x; vÞ þ ðc � 1Þuðt; x; vÞ þ c
1

4p

Z
S2

uðt; x; v0Þdv0 � uðt; x; vÞ
� �

;

with an initial condition of uðx; v; 0Þ ¼ 1, and absorbing boundary conditions. The velocity domain is the unit sphere S2, the
spatial domain is the unit ball of radius d, and c plays the same role as in the previous model. The solution of this equation is
uðt; x; vÞ ¼ expððc � 1ÞtÞPx;v½s > t�;
where the transport process ðXt ;VtÞtP0 is a solution of the differential equation dXt
dt ¼ �Vt , with initial conditions X0 ¼ x and

V0 ¼ v. The velocity after a collision has a uniform law on S2. The cumulative distribution of the time between two collisions
is
1� exp �
Z t

0
cds

� �
¼ 1� expð�ctÞ:
The simulation of ðXt;VtÞtP0 is explained in [28,32,25].

4.2.2. Numerical results
We compute an approximation of the criticality factor when d ¼ 4 using the least squares method in the approximation of

the principal eigenvalues. We perform the simulation using time slices at T1 ¼ 20, T2 ¼ 40 and T3 ¼ 60, using N ¼ 107 par-
ticles for values of c close to the critical one. The criticality factor is about 1:1384602 [7]. The principal eigenvalues of B rel-
ative to c ¼ 1:138 and c ¼ 1:139 are respectively about �5 	 10�4 and 6 	 10�4. The approximation of the criticality factor,
given by the secant method, is c ’ 1:138459 which corresponds to an error of about 10�6. In a previous paper [32], this level
of accuracy required N ¼ 2 	 109 simulations.
5. Conclusion

In the estimation of the principal eigenvalue with a Monte Carlo method, the branching algorithm is a very satisfactory
way to improve the quality of the simulation proposed in [25]. In all the numerical tests presented here, the branching algo-
rithm provided higher accuracy than our previous method for comparable simulation times. Indeed, with the previous meth-
od, the Monte Carlo error was roughly proportional to 1=

ffiffiffiffiffiffiffi
pN

p
, where p was the fraction of particles we keep to estimate the

principal eigenvalue. As long time estimates are needed, the value of p was rather small. With the branching algorithm, the
Monte Carlo error is roughly on the order of 1=

ffiffiffiffi
N
p

. Using the empirical distribution of the positions of the particles at a given
time instead of the exact distribution has a low impact on the quality of the estimation.

In addition, this method gives us a way to estimate the principal eigenfunction of the adjoint operator using the empirical
distribution density of the remaining particles. This could be important in some applications, especially in the neutron trans-
port criticality problem. In addition, it may help to improve and accelerate the estimation of the probability of some events
occurring at large times. Similar Monte Carlo techniques can also be used to simulate the principal eigenfunction of the oper-
ator when the latter is not self-adjoint, nor the eigenfunctions of the operator and its adjoint are related by symmetry rela-
tions. From this approximation of the eigenfunctions, we can also express an approximation of the solution to the Cauchy
problem for large times and at any point, while the simulation only requires a single starting point.

The only drawback of this method is that it requires one to store a large amount of data. However, the amount of data
increases only linearly with the dimension. On the other hand, as is typical of Monte Carlo methods, the computational cost
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does not really depend on dimension. In addition, the branching algorithm is easy to implement, and hence may be used for
high-dimensional problems.

Acknowledgments

The authors wish to thank Prof. Michael Mascagni (Florida State University) for his helpful comments and remarks on our
work.

The first author is grateful to GdR MOMAS (financed by ANDRA, BRGM, CEA, CNRS, IRSN and EDF) for its partial support.

References

[1] J.B. Anderson, A random-walk simulation of the Shrödinger equation: H3
+, J. Chem. Phys. 63 (1975) 499.

[2] N. Balakrishnan, A.P. Basu, The Exponential Distribution: Theory, Methods, and Applications, Gordon and Breach, 1996.
[3] F.M. Buchmann, W.P. Petersen, An exit probability approach to solving high-dimensional Dirichlet problems, SIAM J. Sci. Comput. 28 (3) (2006) 1153–

1166.
[4] D.M. Ceperley. Solving quantum many-body problems with random walks, in: H.J. Gardner, C.M. Savage (Eds.), Computational Physics, Proceedings of

Ninth Physics Summer School, Australian National University, World Scientific Publishing Company, 1997.
[5] F. Cérou, P. Del Moral, F. LeGland, P. Lezaud, Genetic genealogical model in rare event analysis, ALEA 1 (2006) 181–203.
[6] F. Campillo, A. Lejay, A Monte Carlo method without grid for a fractured porous domain model, Monte Carlo Methods Appl. 8 (2) (2002) 129–148.
[7] E.B. Dahl, N.G. Sjostrand, Eigenvalue spectrum of multiplying slabs and spheres for monoenergetic neutrons with anisotropic scattering, Nulc. Sci. Eng.

69 (1979) 114–125.
[8] R. Dautray, J.-L. Lions, Spectre des opérateurs vol. 5 of Analyse Mathématique et Calcul Numérique pour les Sciences et Techniques, Masson, 1987.
[9] R. Dautray, J.-L. Lions, Évolution: numérique transport vol. 9 of Analyse Mathématique et Calcul Numérique pour les Sciences et Techniques, Masson,

1987.
[10] M. Deaconu, A. Lejay, A random walk on rectangles algorithm, Methodol. Comput. Appl. Probab. 8 (1) (2006) 135–151.
[11] P. Del Moral, Feynman-Kac formulae, Probability and its Applications, Springer-Verlag, New York, 2004. Genealogical and interacting particle systems

with applications.
[12] P. Del Moral, J. Garnier, Genealogical particle analysis of rare events, Ann. Appl. Probab. 15 (4) (2005) 2496–2534.
[13] M.D. Donsker, S.R.S. Varadhan, On the principal eigenvalue of second-order elliptic differential operators, Comm. Pure Appl. Math. 29 (6) (1976) 595–

621.
[14] W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73 (1) (2001) 33–83.
[15] U. Gather, V. Schultze, Robust estimation of scale of an exponential distribution, Statist. Neerlandica 53 (3) (1999) 327–341.
[16] E. Gobet, Weak approximation of killed diffusion using Euler schemes, Stochastic Process. Appl. 87 (2) (2000) 167–197.
[17] B.L. Hammond, W.A. Lester, P.J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry, World Scientific Publishing Company Inc., 1994.
[18] Y. Iba, Population Monte Carlo algorithms, Trans. Jpn. Soc. Artif. Intell. 16 (2) (2001) 279–286.
[19] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, vol. 24, North-Holland

Publishing Co., Amsterdam, 1989. Kodansha, Ltd., Tokyo.
[20] K.M. Jansons, G.D. Lythe, Multidimensional exponential timestepping with boundary test, SIAM J. Sci. Comput. 27 (3) (2005) 793–808.
[21] M.H. Kalos, Monte Carlo calculations of the groud state of three- and four-body nuclei, Phys. Rev. 128 (4) (1962) 1791–1795.
[22] M.H. Kalos, Équation du transport. École CEA-EDF-INRIA sur les méthodes de Monte-Carlo, INRIA reports, 1981.
[23] I. Kosztin, B. Faber, K. Schulten, Introduction to the Diffusion Monte Carlo Method, Am. J. Phys. 64 (1996) 633.
[24] A. Lagnoux, Rare event simulation, Probab. Eng. Inform. Sci. 20 (1) (2006).
[25] A. Lejay, S. Maire, Computing the principal eigenvalue of the laplace operator by a stochastic method, Math. Comput. Simulation 73 (3) (2007) 351–

363.
[26] A. Lagnoux Renaudie, Analyse des modèles de branchement avec duplication des trajectoires pour l’étude des événements rares. PhD thesis, Université

Toulouse 3, 2006.
[27] P. Lascaux, R. Théodor, Analyse numérique matricielle appliquée á l’art de l’ingénieur. Tome 2. Méthodes itératives, second ed., Masson, Paris, 1994.
[28] S. Maire. Réduction de variance pour l’intégration numérique et pour le calcul critique en transport neutronique. PhD thesis, Université de Toulon et de

Var, 2001.
[29] M. Mascagni, A. Karaivanova, A Monte Carlo approach for finding more than one eigenpair, Numerical methods and applications, Lecture Notes in

Comput. Sci., vol. 2542, Springer, Berlin, 2003. pp. 123–131.
[30] G.N. Milstein, M.V. Tretyakov, Simulation of a space-time bounded diffusion, Ann. Appl. Probab. 9 (3) (1999) 732–779.
[31] L. Mitas, E.L. Shirley, D.M. Ceperley, Nonlocal Pseudopotentials and Diffusion Monte Carlo, J. Chem. Phys. 95 (1991) 3467.
[32] S. Maire, D. Talay, On a Monte Carlo method for neutron transport criticality computations, IMA J. Numer. Anal. 26 (4) (2006) 657–685.
[33] R.G. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge University Press, 1996.
[34] P.J. Reynolds, D.M. Ceperley, B.J. Adler, W.A. Lester, Fixed-Node Quantum Monte Carlo for Molecules, J. Chem. Phys. 77 (1982) 5593.
[35] P.J. Rousseeuw, C. Croux, Alternatives to the median absolute deviation, J. Am. Statist. Assoc. 88 (1993) 1273–1283.
[36] K.E. Schmidt, P. Niyaz, A. Vaught, M.A. Lee, Green’s function Monte Carlo method with exact imaginary-time propagation, Phys. Rev. E. 71 (1995)

016707.
[37] B.W. Silverman, Density estimation for statistics and data analysis, Monographs on Statistics and Applied Probability, Chapman and Hall, London,

1986.
[38] C.J. Umrigar, K.G. Wilson, J.W. Wilkins, Optimized trial wave functions for quantum Monte Carlo calculations, Phys. Rev. Lett. 60 (1988) 1719.
[39] D. Williams, Weighing the odds, Cambridge University Press, Cambridge, 2001.


	Computing the principal eigenelements of some linear operators using a branching Monte Carlo method
	Introduction
	Estimating the principal eigenvalue and its associated eigenfunction
	The algorithm
	How to choose the final time slice?
	Estimating the principal eigenvalue from the empirical distribution function
	Estimating the principal eigenfunction
	On the adjoint of the homogeneous neutron transport operator
	On diffusion processes

	Estimating the second eigenvalue of the Laplace operator?

	Numerical examples for the Laplace operator
	Case of a rectangle
	A 2-dimensional test case

	Numerical examples with neutron transport operators
	The Lehner-Wing model
	Description and stochastic representation
	In the critical case
	Computation of the criticality factor
	Estimation of the solution of the Cauchy problem at large time

	Multiplying spheres
	The physical model
	Numerical results


	Conclusion
	AcknowledgementAcknowledgments
	References


